3.14.1 \(\int \frac {x^3}{1+x^5} \, dx\) [1301]

3.14.1.1 Optimal result
3.14.1.2 Mathematica [A] (verified)
3.14.1.3 Rubi [A] (verified)
3.14.1.4 Maple [C] (verified)
3.14.1.5 Fricas [B] (verification not implemented)
3.14.1.6 Sympy [A] (verification not implemented)
3.14.1.7 Maxima [A] (verification not implemented)
3.14.1.8 Giac [A] (verification not implemented)
3.14.1.9 Mupad [B] (verification not implemented)

3.14.1.1 Optimal result

Integrand size = 11, antiderivative size = 185 \[ \int \frac {x^3}{1+x^5} \, dx=\frac {1}{5} \sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\sqrt {\frac {1}{5} \left (5-2 \sqrt {5}\right )}+2 \sqrt {\frac {2}{5+\sqrt {5}}} x\right )-\frac {1}{5} \sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\sqrt {\frac {1}{5} \left (5+2 \sqrt {5}\right )}-\sqrt {\frac {2}{5} \left (5+\sqrt {5}\right )} x\right )-\frac {1}{5} \log (1+x)+\frac {1}{20} \left (1-\sqrt {5}\right ) \log \left (1-\frac {1}{2} \left (1-\sqrt {5}\right ) x+x^2\right )+\frac {1}{20} \left (1+\sqrt {5}\right ) \log \left (1-\frac {1}{2} \left (1+\sqrt {5}\right ) x+x^2\right ) \]

output
-1/5*ln(1+x)+1/20*ln(1+x^2-1/2*x*(-5^(1/2)+1))*(-5^(1/2)+1)+1/20*ln(1+x^2- 
1/2*x*(5^(1/2)+1))*(5^(1/2)+1)+1/10*arctan(1/5*x*(50+10*5^(1/2))^(1/2)-1/5 
*(25+10*5^(1/2))^(1/2))*(10-2*5^(1/2))^(1/2)+1/10*arctan(1/5*(25-10*5^(1/2 
))^(1/2)+2*x*2^(1/2)/(5+5^(1/2))^(1/2))*(10+2*5^(1/2))^(1/2)
 
3.14.1.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.78 \[ \int \frac {x^3}{1+x^5} \, dx=\frac {1}{20} \left (-2 \sqrt {10-2 \sqrt {5}} \arctan \left (\frac {1+\sqrt {5}-4 x}{\sqrt {10-2 \sqrt {5}}}\right )+2 \sqrt {2 \left (5+\sqrt {5}\right )} \arctan \left (\frac {-1+\sqrt {5}+4 x}{\sqrt {2 \left (5+\sqrt {5}\right )}}\right )-4 \log (1+x)-\left (-1+\sqrt {5}\right ) \log \left (1+\frac {1}{2} \left (-1+\sqrt {5}\right ) x+x^2\right )+\left (1+\sqrt {5}\right ) \log \left (1-\frac {1}{2} \left (1+\sqrt {5}\right ) x+x^2\right )\right ) \]

input
Integrate[x^3/(1 + x^5),x]
 
output
(-2*Sqrt[10 - 2*Sqrt[5]]*ArcTan[(1 + Sqrt[5] - 4*x)/Sqrt[10 - 2*Sqrt[5]]] 
+ 2*Sqrt[2*(5 + Sqrt[5])]*ArcTan[(-1 + Sqrt[5] + 4*x)/Sqrt[2*(5 + Sqrt[5]) 
]] - 4*Log[1 + x] - (-1 + Sqrt[5])*Log[1 + ((-1 + Sqrt[5])*x)/2 + x^2] + ( 
1 + Sqrt[5])*Log[1 - ((1 + Sqrt[5])*x)/2 + x^2])/20
 
3.14.1.3 Rubi [A] (verified)

Time = 0.37 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.91, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.727, Rules used = {822, 16, 27, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3}{x^5+1} \, dx\)

\(\Big \downarrow \) 822

\(\displaystyle \frac {2}{5} \int \frac {\left (1-\sqrt {5}\right ) x+\sqrt {5}+1}{2 \left (2 x^2-\left (1-\sqrt {5}\right ) x+2\right )}dx+\frac {2}{5} \int \frac {\left (1+\sqrt {5}\right ) x-\sqrt {5}+1}{2 \left (2 x^2-\left (1+\sqrt {5}\right ) x+2\right )}dx-\frac {1}{5} \int \frac {1}{x+1}dx\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {2}{5} \int \frac {\left (1-\sqrt {5}\right ) x+\sqrt {5}+1}{2 \left (2 x^2-\left (1-\sqrt {5}\right ) x+2\right )}dx+\frac {2}{5} \int \frac {\left (1+\sqrt {5}\right ) x-\sqrt {5}+1}{2 \left (2 x^2-\left (1+\sqrt {5}\right ) x+2\right )}dx-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {\left (1-\sqrt {5}\right ) x+\sqrt {5}+1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx+\frac {1}{5} \int \frac {\left (1+\sqrt {5}\right ) x-\sqrt {5}+1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {1}{5} \left (\frac {1}{2} \left (5+\sqrt {5}\right ) \int \frac {1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx+\frac {1}{4} \left (1-\sqrt {5}\right ) \int -\frac {-4 x-\sqrt {5}+1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx\right )+\frac {1}{5} \left (\frac {1}{2} \left (5-\sqrt {5}\right ) \int \frac {1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx+\frac {1}{4} \left (1+\sqrt {5}\right ) \int -\frac {-4 x+\sqrt {5}+1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx\right )-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{5} \left (\frac {1}{2} \left (5+\sqrt {5}\right ) \int \frac {1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {-4 x-\sqrt {5}+1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx\right )+\frac {1}{5} \left (\frac {1}{2} \left (5-\sqrt {5}\right ) \int \frac {1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {-4 x+\sqrt {5}+1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx\right )-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {1}{5} \left (-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {-4 x+\sqrt {5}+1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx-\left (5-\sqrt {5}\right ) \int \frac {1}{-\left (4 x-\sqrt {5}-1\right )^2-2 \left (5-\sqrt {5}\right )}d\left (4 x-\sqrt {5}-1\right )\right )+\frac {1}{5} \left (-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {-4 x-\sqrt {5}+1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx-\left (5+\sqrt {5}\right ) \int \frac {1}{-\left (4 x+\sqrt {5}-1\right )^2-2 \left (5+\sqrt {5}\right )}d\left (4 x+\sqrt {5}-1\right )\right )-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {1}{5} \left (\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {4 x+\sqrt {5}-1}{\sqrt {2 \left (5+\sqrt {5}\right )}}\right )-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {-4 x-\sqrt {5}+1}{2 x^2-\left (1-\sqrt {5}\right ) x+2}dx\right )+\frac {1}{5} \left (\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {4 x-\sqrt {5}-1}{\sqrt {2 \left (5-\sqrt {5}\right )}}\right )-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {-4 x+\sqrt {5}+1}{2 x^2-\left (1+\sqrt {5}\right ) x+2}dx\right )-\frac {1}{5} \log (x+1)\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {1}{5} \left (\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {4 x+\sqrt {5}-1}{\sqrt {2 \left (5+\sqrt {5}\right )}}\right )+\frac {1}{4} \left (1-\sqrt {5}\right ) \log \left (2 x^2-\left (1-\sqrt {5}\right ) x+2\right )\right )+\frac {1}{5} \left (\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {4 x-\sqrt {5}-1}{\sqrt {2 \left (5-\sqrt {5}\right )}}\right )+\frac {1}{4} \left (1+\sqrt {5}\right ) \log \left (2 x^2-\left (1+\sqrt {5}\right ) x+2\right )\right )-\frac {1}{5} \log (x+1)\)

input
Int[x^3/(1 + x^5),x]
 
output
-1/5*Log[1 + x] + (Sqrt[(5 + Sqrt[5])/2]*ArcTan[(-1 + Sqrt[5] + 4*x)/Sqrt[ 
2*(5 + Sqrt[5])]] + ((1 - Sqrt[5])*Log[2 - (1 - Sqrt[5])*x + 2*x^2])/4)/5 
+ (Sqrt[(5 - Sqrt[5])/2]*ArcTan[(-1 - Sqrt[5] + 4*x)/Sqrt[2*(5 - Sqrt[5])] 
] + ((1 + Sqrt[5])*Log[2 - (1 + Sqrt[5])*x + 2*x^2])/4)/5
 

3.14.1.3.1 Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 822
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[a/b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k 
- 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 
 1)*(Pi/n)]*x + s^2*x^2), x]; -(-r)^(m + 1)/(a*n*s^m)   Int[1/(r + s*x), x] 
 + 2*(r^(m + 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b} 
, x] && IGtQ[(n - 1)/2, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
3.14.1.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.53 (sec) , antiderivative size = 45, normalized size of antiderivative = 0.24

method result size
risch \(-\frac {\ln \left (1+x \right )}{5}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-\textit {\_Z}^{3}+\textit {\_Z}^{2}-\textit {\_Z} +1\right )}{\sum }\textit {\_R} \ln \left (\textit {\_R}^{3}-\textit {\_R}^{2}+\textit {\_R} +x -1\right )\right )}{5}\) \(45\)
default \(-\frac {\ln \left (1+x \right )}{5}-\frac {\left (-\sqrt {5}-1\right ) \ln \left (-x \sqrt {5}+2 x^{2}-x +2\right )}{20}-\frac {2 \left (\sqrt {5}-1-\frac {\left (-\sqrt {5}-1\right )^{2}}{4}\right ) \arctan \left (\frac {-\sqrt {5}+4 x -1}{\sqrt {10-2 \sqrt {5}}}\right )}{5 \sqrt {10-2 \sqrt {5}}}+\frac {\left (-\sqrt {5}+1\right ) \ln \left (x \sqrt {5}+2 x^{2}-x +2\right )}{20}+\frac {2 \left (\sqrt {5}+1-\frac {\left (-\sqrt {5}+1\right ) \left (\sqrt {5}-1\right )}{4}\right ) \arctan \left (\frac {\sqrt {5}+4 x -1}{\sqrt {10+2 \sqrt {5}}}\right )}{5 \sqrt {10+2 \sqrt {5}}}\) \(156\)
meijerg \(-\frac {x^{4} \ln \left (1+\left (x^{5}\right )^{\frac {1}{5}}\right )}{5 \left (x^{5}\right )^{\frac {4}{5}}}+\frac {x^{4} \cos \left (\frac {\pi }{5}\right ) \ln \left (1-2 \cos \left (\frac {\pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}+\left (x^{5}\right )^{\frac {2}{5}}\right )}{5 \left (x^{5}\right )^{\frac {4}{5}}}+\frac {2 x^{4} \sin \left (\frac {\pi }{5}\right ) \arctan \left (\frac {\sin \left (\frac {\pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}}{1-\cos \left (\frac {\pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}}\right )}{5 \left (x^{5}\right )^{\frac {4}{5}}}-\frac {x^{4} \cos \left (\frac {2 \pi }{5}\right ) \ln \left (1+2 \cos \left (\frac {2 \pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}+\left (x^{5}\right )^{\frac {2}{5}}\right )}{5 \left (x^{5}\right )^{\frac {4}{5}}}+\frac {2 x^{4} \sin \left (\frac {2 \pi }{5}\right ) \arctan \left (\frac {\sin \left (\frac {2 \pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}}{1+\cos \left (\frac {2 \pi }{5}\right ) \left (x^{5}\right )^{\frac {1}{5}}}\right )}{5 \left (x^{5}\right )^{\frac {4}{5}}}\) \(165\)

input
int(x^3/(x^5+1),x,method=_RETURNVERBOSE)
 
output
-1/5*ln(1+x)+1/5*sum(_R*ln(_R^3-_R^2+_R+x-1),_R=RootOf(_Z^4-_Z^3+_Z^2-_Z+1 
))
 
3.14.1.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 905 vs. \(2 (122) = 244\).

Time = 0.96 (sec) , antiderivative size = 905, normalized size of antiderivative = 4.89 \[ \int \frac {x^3}{1+x^5} \, dx=\text {Too large to display} \]

input
integrate(x^3/(x^5+1),x, algorithm="fricas")
 
output
-1/20*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)*log(1/64*(sqrt(5) + 10 
*sqrt(-1/50*sqrt(5) - 1/10) - 1)^3 + 1/64*(sqrt(5) + 10*sqrt(-1/50*sqrt(5) 
 - 1/10) - 1)*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 + 1/16*(sqrt 
(5) + 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 + 1/64*((sqrt(5) + 10*sqrt(-1/5 
0*sqrt(5) - 1/10) - 1)^2 + 4*sqrt(5) + 40*sqrt(-1/50*sqrt(5) - 1/10) - 4)* 
(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1) + x + 1/4*sqrt(5) + 5/2*sqrt 
(-1/50*sqrt(5) - 1/10) - 1/4) - 1/20*(sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/ 
10) - 1)*log(-1/64*(sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^3 - 1/16* 
(sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 + x - 1/4*sqrt(5) - 5/2*sq 
rt(-1/50*sqrt(5) - 1/10) - 3/4) + 1/20*(sqrt(5) + 2*sqrt(-3/16*(sqrt(5) + 
10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 - 1/8*(sqrt(5) + 10*sqrt(-1/50*sqrt(5 
) - 1/10) + 3)*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1) - 3/16*(sqrt( 
5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 - 1/2*sqrt(5) - 5*sqrt(-1/50*sqr 
t(5) - 1/10) - 5/2) + 1)*log(-1/64*(sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/10 
) - 1)*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 + 1/16*sqrt(-3/16*( 
sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 - 1/8*(sqrt(5) + 10*sqrt(-1 
/50*sqrt(5) - 1/10) + 3)*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1) - 3 
/16*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1)^2 - 1/2*sqrt(5) - 5*sqrt 
(-1/50*sqrt(5) - 1/10) - 5/2)*(sqrt(5) + 10*sqrt(-1/50*sqrt(5) - 1/10) - 1 
)*(sqrt(5) - 10*sqrt(-1/50*sqrt(5) - 1/10) - 1) - 1/64*((sqrt(5) + 10*s...
 
3.14.1.6 Sympy [A] (verification not implemented)

Time = 0.54 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.19 \[ \int \frac {x^3}{1+x^5} \, dx=- \frac {\log {\left (x + 1 \right )}}{5} + \operatorname {RootSum} {\left (625 t^{4} - 125 t^{3} + 25 t^{2} - 5 t + 1, \left ( t \mapsto t \log {\left (625 t^{4} + x \right )} \right )\right )} \]

input
integrate(x**3/(x**5+1),x)
 
output
-log(x + 1)/5 + RootSum(625*_t**4 - 125*_t**3 + 25*_t**2 - 5*_t + 1, Lambd 
a(_t, _t*log(625*_t**4 + x)))
 
3.14.1.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 144, normalized size of antiderivative = 0.78 \[ \int \frac {x^3}{1+x^5} \, dx=\frac {\sqrt {5} {\left (\sqrt {5} + 1\right )} \arctan \left (\frac {4 \, x + \sqrt {5} - 1}{\sqrt {2 \, \sqrt {5} + 10}}\right )}{5 \, \sqrt {2 \, \sqrt {5} + 10}} + \frac {\sqrt {5} {\left (\sqrt {5} - 1\right )} \arctan \left (\frac {4 \, x - \sqrt {5} - 1}{\sqrt {-2 \, \sqrt {5} + 10}}\right )}{5 \, \sqrt {-2 \, \sqrt {5} + 10}} + \frac {{\left (\sqrt {5} + 3\right )} \log \left (2 \, x^{2} - x {\left (\sqrt {5} + 1\right )} + 2\right )}{10 \, {\left (\sqrt {5} + 1\right )}} + \frac {{\left (\sqrt {5} - 3\right )} \log \left (2 \, x^{2} + x {\left (\sqrt {5} - 1\right )} + 2\right )}{10 \, {\left (\sqrt {5} - 1\right )}} - \frac {1}{5} \, \log \left (x + 1\right ) \]

input
integrate(x^3/(x^5+1),x, algorithm="maxima")
 
output
1/5*sqrt(5)*(sqrt(5) + 1)*arctan((4*x + sqrt(5) - 1)/sqrt(2*sqrt(5) + 10)) 
/sqrt(2*sqrt(5) + 10) + 1/5*sqrt(5)*(sqrt(5) - 1)*arctan((4*x - sqrt(5) - 
1)/sqrt(-2*sqrt(5) + 10))/sqrt(-2*sqrt(5) + 10) + 1/10*(sqrt(5) + 3)*log(2 
*x^2 - x*(sqrt(5) + 1) + 2)/(sqrt(5) + 1) + 1/10*(sqrt(5) - 3)*log(2*x^2 + 
 x*(sqrt(5) - 1) + 2)/(sqrt(5) - 1) - 1/5*log(x + 1)
 
3.14.1.8 Giac [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 112, normalized size of antiderivative = 0.61 \[ \int \frac {x^3}{1+x^5} \, dx=\frac {1}{20} \, {\left (\sqrt {5} + 1\right )} \log \left (x^{2} - \frac {1}{2} \, x {\left (\sqrt {5} + 1\right )} + 1\right ) - \frac {1}{20} \, {\left (\sqrt {5} - 1\right )} \log \left (x^{2} + \frac {1}{2} \, x {\left (\sqrt {5} - 1\right )} + 1\right ) + \frac {1}{10} \, \sqrt {2 \, \sqrt {5} + 10} \arctan \left (\frac {4 \, x + \sqrt {5} - 1}{\sqrt {2 \, \sqrt {5} + 10}}\right ) + \frac {1}{10} \, \sqrt {-2 \, \sqrt {5} + 10} \arctan \left (\frac {4 \, x - \sqrt {5} - 1}{\sqrt {-2 \, \sqrt {5} + 10}}\right ) - \frac {1}{5} \, \log \left ({\left | x + 1 \right |}\right ) \]

input
integrate(x^3/(x^5+1),x, algorithm="giac")
 
output
1/20*(sqrt(5) + 1)*log(x^2 - 1/2*x*(sqrt(5) + 1) + 1) - 1/20*(sqrt(5) - 1) 
*log(x^2 + 1/2*x*(sqrt(5) - 1) + 1) + 1/10*sqrt(2*sqrt(5) + 10)*arctan((4* 
x + sqrt(5) - 1)/sqrt(2*sqrt(5) + 10)) + 1/10*sqrt(-2*sqrt(5) + 10)*arctan 
((4*x - sqrt(5) - 1)/sqrt(-2*sqrt(5) + 10)) - 1/5*log(abs(x + 1))
 
3.14.1.9 Mupad [B] (verification not implemented)

Time = 5.82 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.06 \[ \int \frac {x^3}{1+x^5} \, dx=\ln \left (25\,x\,\left (\frac {\sqrt {2}\,\sqrt {-\sqrt {5}-5}}{20}-\frac {\sqrt {5}}{20}+\frac {1}{20}\right )-5\right )\,\left (\frac {\sqrt {2}\,\sqrt {-\sqrt {5}-5}}{20}-\frac {\sqrt {5}}{20}+\frac {1}{20}\right )-\frac {\ln \left (x+1\right )}{5}-\ln \left (25\,x\,\left (\frac {\sqrt {2}\,\sqrt {-\sqrt {5}-5}}{20}+\frac {\sqrt {5}}{20}-\frac {1}{20}\right )+5\right )\,\left (\frac {\sqrt {2}\,\sqrt {-\sqrt {5}-5}}{20}+\frac {\sqrt {5}}{20}-\frac {1}{20}\right )+\ln \left (25\,x\,\left (\frac {\sqrt {5}}{20}-\frac {\sqrt {2}\,\sqrt {\sqrt {5}-5}}{20}+\frac {1}{20}\right )-5\right )\,\left (\frac {\sqrt {5}}{20}-\frac {\sqrt {2}\,\sqrt {\sqrt {5}-5}}{20}+\frac {1}{20}\right )+\ln \left (25\,x\,\left (\frac {\sqrt {5}}{20}+\frac {\sqrt {2}\,\sqrt {\sqrt {5}-5}}{20}+\frac {1}{20}\right )-5\right )\,\left (\frac {\sqrt {5}}{20}+\frac {\sqrt {2}\,\sqrt {\sqrt {5}-5}}{20}+\frac {1}{20}\right ) \]

input
int(x^3/(x^5 + 1),x)
 
output
log(25*x*((2^(1/2)*(- 5^(1/2) - 5)^(1/2))/20 - 5^(1/2)/20 + 1/20) - 5)*((2 
^(1/2)*(- 5^(1/2) - 5)^(1/2))/20 - 5^(1/2)/20 + 1/20) - log(x + 1)/5 - log 
(25*x*((2^(1/2)*(- 5^(1/2) - 5)^(1/2))/20 + 5^(1/2)/20 - 1/20) + 5)*((2^(1 
/2)*(- 5^(1/2) - 5)^(1/2))/20 + 5^(1/2)/20 - 1/20) + log(25*x*(5^(1/2)/20 
- (2^(1/2)*(5^(1/2) - 5)^(1/2))/20 + 1/20) - 5)*(5^(1/2)/20 - (2^(1/2)*(5^ 
(1/2) - 5)^(1/2))/20 + 1/20) + log(25*x*(5^(1/2)/20 + (2^(1/2)*(5^(1/2) - 
5)^(1/2))/20 + 1/20) - 5)*(5^(1/2)/20 + (2^(1/2)*(5^(1/2) - 5)^(1/2))/20 + 
 1/20)